On Triangulated Orbit Categories
نویسندگان
چکیده
We show that the category of orbits of the bounded derived category of a hereditary category under a well-behaved autoequivalence is canonically triangulated. This answers a question by Aslak Buan, Robert Marsh and Idun Reiten which appeared in their study [8] with M. Reineke and G. Todorov of the link between tilting theory and cluster algebras (cf. also [16]) and a question by Hideto Asashiba about orbit categories. We observe that the resulting triangulated orbit categories provide many examples of triangulated categories with the Calabi-Yau property. These include the category of projective modules over a preprojective algebra of generalized Dynkin type in the sense of Happel-Preiser-Ringel [29], whose triangulated structure goes back to Auslander-Reiten’s work [6], [44], [7].
منابع مشابه
Acyclic Calabi-yau Categories with an Appendix by Michel Van Den Bergh
We show that an algebraic 2-Calabi-Yau triangulated category over an algebraically closed field is a cluster category if it contains a cluster tilting subcategory whose quiver has no oriented cycles. We prove a similar characterization for higher cluster categories. As a first application, we show that the stable category of maximal Cohen-Macaulay modules over a certain isolated singularity of ...
متن کاملThe Graded Center of a Triangulated Category
With applications in mind to the representations and cohomology of block algebras, we examine elements of the graded center of a triangulated category when the category has a Serre functor. These are natural transformations from the identity functor to powers of the shift functor that commute with the shift functor We show that such natural transformations which have support in a single shift o...
متن کاملAcyclic Calabi-yau Categories
We prove a structure theorem for triangulated Calabi-Yau categories: An algebraic 2-Calabi-Yau triangulated category over an algebraically closed field is a cluster category iff it contains a cluster tilting subcategory whose quiver has no oriented cycles. We prove a similar characterization for higher cluster categories. As an application to commutative algebra, we show that the stable categor...
متن کاملContinuous Frobenius Categories
We introduce continuous Frobenius categories. These are topological categories which are constructed using representations of the circle over a discrete valuation ring. We show that they are Krull-Schmidt with one indecomposable object for each pair of (not necessarily distinct) points on the circle. By putting restrictions on these points we obtain various Frobenius subcategories. The main pur...
متن کاملThe axioms for n-angulated categories
Triangulated categories were introduced independently in algebraic geometry by Verdier [7, 8], based on ideas of Grothendieck, and in algebraic topology by Puppe [6]. These constructions have since played a crucial role in representation theory, algebraic geometry, commutative algebra, algebraic topology and other areas of mathematics (and even theoretical physics). Recently, Geiss, Keller and ...
متن کامل